1. Fourier transforms.

Determine the Fourier transforms of the following functions:

a. $f(x) = \{-1 \ (-\pi < x < 0); +1 \ (0 < x < \pi); 0 \ (\text{otherwise})\}.$ b. $f(t) = e^{-kt}g(t)$, where $g(t) = \{1 \ (0 \le t \le b); 0 \ (\text{otherwise})\}.$

2. Calculating a spectrum.

A complex time-domain signal is measured in an experiment. After an initial fast decay with time constant k_1 , it decays exponentially with time constant k_2 and has two cosine waves superimposed whose periods are $1/c_1$ and $1/c_2$. For experimental reasons, only the time range from t_1 to t_2 can be observed. Find the function f(t) that describes this behaviour and the corresponding spectrum $F(\omega)$ (You will get four terms for each combination of $k_{1,2}$ and $c_{1,2}$ – they all have the same form; so exploit the symmetry to keep the equations simple.). If you can get hold of a computer with mathematical software on it, plot the real and imaginary parts of both f(t) and $F(\omega)$ and see how changes to the parameters k_1 , k_2 , c_1 , c_2 , t_1 , t_2 affect the spectrum. In particular, investigate the following:

- a. What is the effect of cutting off the decay before it is close to zero (*i.e.* too small t_2)?
- b. What is the effect of starting the time domain at $t_1 > 0$?
- c. What is the minimum ratio $\frac{k_1}{k_2}$ for which the spectral contributions from the two decays remain discernible?
- d. What is the relative minimum frequency difference $\frac{c_1-c_2}{c_1}$ of the two waves to ensure they come out as distinct peak maxima in the spectrum?

Acknowledgement.

Example 1a is stolen from ML Boas; Mathematical Methods in the Physical Sciences, John Wiley, New York (USA) ²1983.

rw/031105