1. Solving linear higher-order ODEs. Solve the following second and third order ODEs. a. d^2y $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0;$ $y(0) = 12;$ $y(12) = 0.$ Result: *y* ≈ 12e−2*^x* b. $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0;$ $y(1) = y(-1);$ $y(0) = 1.$ Result: *y* ≈ −0.57e−3*^x* + 1.57e−2*^x* c. d^2y $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 12e^{-x}$; $y(-1) = 30$; $y(0) = 3$. First solve the complementary homogeneous equation. Both roots of its characteristic polynomial are identical - hence multiply one of the terms by *x*. Complementary function: $y_c = c_1 e^{-3x} + c_2 x e^{-3x}$. Particular solution is likely to be of form $y_p = ae^{-x}$. Substitute into DE to find *a*. *Particular function:* $y_p = 3e^{-x}$ *.* Full solution, with BC applied: $y(x) = y_c(x) + y_p(x) \approx -1.09xe^{-3x} + 3e^{-x}$. d. $\frac{d^3y}{dx^3}$ $\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} - 9\frac{dy}{dx} - 5y = 0.$ First root can be guessed as $u_1 = -1$. Divide characteristic polynomial by $(u - u_1) = (u + 1)$. Get other roots from quadratic formula. One root is double (-1) , hence multiply one of the terms by *x*. Result: $y = c_1 e^{-x} + c_2 x e^{-x} + c_3 e^{5x}$. e. d^2y $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 3e^{2x}$. Particular solution cannot be guessed since RHS is a solution of the complementary homogeneous DE. *Factorise equation to get* $(\frac{\partial}{\partial x} + 1)(\frac{\partial}{\partial x} - 2)y = 3e^{2x}$. Define $u = (\frac{\partial}{\partial x} - 2)y$ and solve $(\frac{\partial}{\partial x} + 1)u = 3e^{2x}$ $\frac{\partial}{\partial x} + 1)u = 3e^{2x}.$

Result for
$$
u: u = e^{2x} + c_1e^{-x}
$$
.
Solve $(\frac{\partial}{\partial x} + 1)y = u = e^{2x} + c_1e^{-x}$.
Result: $y = xe^{2x} - \frac{c_1}{3}e^{-x} + c_2e^{2x}$.

2. Separating PDEs.

Solve the following homogeneous PDEs by Separation of Variables.

- a. $\frac{\partial z}{\partial y} + 2 \frac{\partial z}{\partial x} = 0.$ *Result:* $z(x, y) = c_1 e^{c(2y-x)}$.
- b. $\frac{\partial z}{\partial y} + z \frac{\partial z}{\partial x} = 0.$ $Result: z(x, y) = \frac{x + d}{y + e}.$

c.
$$
\frac{\partial z}{\partial y} + x \frac{\partial z}{\partial x} = 0.
$$

Result: $z(x, y) = de^{cy} x^{-c}$.

3. Modelling diffusion.

The diffusion equation in typical physical notation is the inverse of the form we have in the toolbox: In onedimensional geometry it is: $\frac{\partial c}{\partial t}=\frac{\partial}{\partial x}\left(D\frac{\partial c}{\partial x}\right)$, where D is the diffusion coefficient, which is a constant in well-behaved systems. If this is the case, *D* can go before the differential: $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$ $\frac{\partial^2 c}{\partial x^2}$, which is exactly the toolbox case. In less wellbehaved systems such as those we're studying in the Materials Physics Group, $D = D(x)$ is really a function of the spatial coordinate. We don't know this dependence explicitly, but the concentration dependence of $D = D(c)$ is known from literature data, and we can guess the concentration profile *c*(*x*). What differential equation do we need to solve to get $c(x, t)$? Classify the DE in terms of the properties discussed last week. Apply the chain rule: $\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) = \frac{\partial D}{\partial x} \frac{\partial c}{\partial x} + D \frac{\partial^2 c}{\partial x^2}$ $rac{\partial^2 c}{\partial x^2}$.

We don't know $\frac{\partial D}{\partial c}$, but since $D(c(x))$ we can apply the chainrule again: . . . = $\frac{\partial D}{\partial c} \frac{\partial c}{\partial x} \frac{\partial c}{\partial x} + D \frac{\partial^2 c}{\partial x^2}$ $\frac{\partial^2 c}{\partial x^2} = \frac{\partial D}{\partial c} \left(\frac{\partial c}{\partial x} \right)^2 + D \frac{\partial^2 c}{\partial x^2}$ $rac{\partial^2 c}{\partial x^2}$. So, this is a non-linear (1st derivative is squared) heterogeneous (LHS contains no *x* nor any of its derivatives) 2nd order (highest derivative is 2nd order) partial (*c* is function of *x* and *t*) DE.

4. Factorising the characteristic polynomial.

When solving second-order ODEs with constant coefficients, we have reduced the PDE to two ODEs by factorising the characteristic polynomial. The constants in each factor were given as $k_{1,2}=\frac{b}{2}\pm\sqrt{\frac{b^2}{4}-c}$ if the polynomial is $x^2 + bx + c = (x + k_1)(x + k_2)$. Prove this.

 $x^2 + bx + c = (x + k_1)(x + k_2) = x^2 + k_1x + k_2x + k_1k_2.$ *k*₂ is found by quadratic formula: $k_2 = \frac{b}{2} \pm \sqrt{\frac{b^2}{4}-c}$, and $k_1 = k_2 - b = -(\frac{b}{2} \pm \sqrt{\frac{b^2}{4}-c}) = \frac{b}{2} \mp \sqrt{\frac{b^2}{4}-c}$.

Acknowledgement.

Examples 1 are stolen or adapted from *ML Boas; Mathematical Methods in the Physical Sciences, John Wiley, New York (USA)* ²*1983.*

rw/031015