ph260 Theoretical Physics 2 — workshop 3

1. Solving linear higher-order ODEs.

Solve the following second and third order ODEs.

a.
$$
\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0; \t y(0) = 12; \t y(12) = 0.
$$

\nb.
$$
\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0; \t y(1) = y(-1); \t y(0) = 1.
$$

\nc.
$$
\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 12e^{-x}; \t y(-1) = 30; \t y(0) = 3.
$$

\nd.
$$
\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} - 9\frac{dy}{dx} - 5y = 0.
$$

$$
e. \qquad \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 3e^{2x}.
$$

2. Separating PDEs.

Solve the following homogeneous PDEs by Separation of Variables.

- a. $\frac{\partial z}{\partial y} + 2 \frac{\partial z}{\partial x} = 0.$
- b. $\frac{\partial z}{\partial y} + z \frac{\partial z}{\partial x} = 0.$
- c. $\frac{\partial z}{\partial y} + x \frac{\partial z}{\partial x} = 0.$

3. Modelling diffusion.

The diffusion equation in typical physical notation is the inverse of the form we have in the toolbox: In onedimensional geometry it is: $\frac{\partial c}{\partial t}=\frac{\partial}{\partial x}\left(D\frac{\partial c}{\partial x}\right)$, where D is the diffusion coefficient, which is a constant in well-behaved systems. If this is the case, *D* can go before the differential: $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$ $\frac{\partial^2 c}{\partial x^2}$, which is exactly the toolbox case. In less wellbehaved systems such as those we're studying in the Materials Physics Group, $D = D(x)$ is really a function of the spatial coordinate. We don't know this dependence explicitly, but the concentration dependence of $D = D(c)$ is known from literature data, and we can guess the concentration profile $c(x)$. What differential equation do we need to solve to get $c(x, t)$? Classify the DE in terms of the properties discussed last week.

4. Factorising the characteristic polynomial.

When solving second-order ODEs with constant coefficients, we have reduced the PDE to two ODEs by factorising the characteristic polynomial. The constants in each factor were given as $k_{1,2} = \frac{b}{2} \pm \sqrt{\frac{b^2}{4}-c}$ if the polynomial is $x^2 + bx + c = (x + k_1)(x + k_2)$. Prove this.

Acknowledgement.

Examples 1 are stolen or adapted from *ML Boas; Mathematical Methods in the Physical Sciences, John Wiley, New York (USA)* ²*1983.*

rw/031015