
ph260 Theoretical Physics 2 — workshop 2 — solutions

1. Classifying differential equations.
Determine the order of the following differential equations, state whether they are linear or non-linear, homogeneous
or non-homogeneous and ordinary or partial. How many boundary conditions will you need to find a specific solution
for each? Find examples of the type of differential equation described at the bottom of the table and state how many
boundary conditions you need for your example. (a,b,c,d are just non-zero constants.)

order linear? ordinary? homo- number
geneous? of BCs

∂2z
∂x2

+ ∂z
∂y

+ 3y = 13 2 + – – 3
dy
dx

+ ay = 0 1 + + + 1
dy
dx
− a

(
dy
dx

)2
= −y 1 – + + 1

∂z
∂x

+ 5z + 3y2 = a 1 – – – 1
∂3z
∂x2∂y

+ b
z
= 0 3 + – + 3

a∂z
∂y

= x ∂z
∂x

1 + – + 2
dy
dx
− ad2y

dx2
= −y 2 + + + 2

dy
dx

+ ay3 + by2 + cy + d = 0 1 – + – 1

e.g .∂
3z(x,y)
∂x3

+ az = 0 3 + – + 3
e.g . ∂z

∂x
+ ay + bz = c 1 + – – 1

e.g . sin
(
d2y
dx2

)
+ ay = 0 2 – + + 1

2. Picking solution strategies for ODEs.
Decide whether you can solve the following ODEs by separation, by using the general approach for linear ODEs, by
using Bernoulli’s equation or by applying the homogeneous-equation approach, or whether it is one of the stubborn
cases that need reading up in a maths book... Unless the latter is the case, solve it, then apply boundary conditions
where supplied. If you can’t solve the equation, say why each of the techniques fail.

a. xy′ − xy = y ; y(1) = 1
Solve by separation: 1

ydy = x+1
x dx.

Result: y(x) = xex−1.

b. y′ + y cosx = sin 2x
Not separable: 3 terms, one of which will always contain both x and y.
Solve by general formula for fully linear ODE: y′ + cos(x)y = sin(2x).
Applying the formula yields: y(x) = e− sin x

(∫
sin(2x)esin xdx+ c

)
.

I guess that this can be solved by substitution, but I haven’t tried.

c.
dy
dx

= 2xy2+x
x2y−y

Solve by separation: x
x2−1dx = y

2y2+1dy.

Each side then takes a product rule (
∫
fgdx = f

∫
gdx−

∫
df
dx

∫
gd2x) to eliminate the x or y in the denominator.

The remaining integrals are of the form 1
ax2+bx+c and can be looked up.

d. 3xy2y′ + 3y3 = 1 ; y(0) = −8
Not separable: 3 terms, one of which will always contain both x and y.
Not fully linear: y3 term prevents usage of general formula.
Solve by Bernoulli approach: y′ + 1

xy = 1
3xy
−2.

Note that e−a ln(x)+c = be−a ln(x) = b
(
eln(x)

)−a
= bx−a (where b = ec).

Result prior to applying boundary condition: y =
(
1
3 − cx

−3) 1
3 .

I’m afraid I got the boundary condition wrong - it isn’t consistent with the general solution.

e. x2y′ + 3xy = 1 ; y(3) = 0
Not separable: 3 terms, one of which will always contain both x and y.
Solve by general formula for fully linear ODE: y′ + 3

xy = 1
x2 .

Result: y(x) = 1
2x −

9
2x3 .

f.
dy
dx

= 1
cos y−x tan y ; y(0) = π

This one is better solved upside down - solve for x(y) rather than y(x): dx
dy = cos(y)− x tan(y).
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Not separable: 3 terms, one of which will always contain both y and x.
Solve by general formula for fully linear ODE: x′ + tan(y)x = cos y.
Result: x(y) = (y − π) cos y. If you are pedantic about it, you could rearrange this to yield y(x) = . . .

g. xydx+ (y2 − x2)dy = 0
Not separable: 3 terms, one of which will always contain both x and y.
Not fully linear: y2 term prevents usage of general formula.
Not Bernoulli-type: Prefactor p(x) cannot be made function of x only.

Homogeneous equation - substitute v = y
x , then separate: 1

xdx = 1−v2
v dv.

Result after resubstitution: y = x2e
y2

2x2 (note that this is a circular formula containing y on either side).

h. cosx cos ydx− sinx sin ydy = 0 ; y(π
2
) = π

Solve by separation: cos x
sin xdx = sin y

cos ydy.

Result: sinx cos y = −1. Again, you could rearrange this to get it in y(x) = . . . form.

Don’t forget that you can (and should!) always check your result by substituting it into the original differential
equation!

3. Translating physics into maths.
Take the following physical problems and write them down as a formula. Then replace the variables in the formula
by those you are used to from the maths toolbox. Say which approach will solve the equation and solve it.

a. Derive a formula for the growth of an ice layer on a lake in cold weather. To keep the problem simple, assume
the temperature of the liquid is a constant Tl=283 K, the air above a constant Tg=263 K, and the ice grows in
a layer of uniform thickness x(t) as time t progresses. The rate of formation of ice is proportional to the rate
at which heat is transferred from the liquid to the air above. Start at the moment just before ice formation
begins.
Heat transfer is proportional to the temperature gradient

Tl−Tg

x .

This leads to the ODE dx
dt = κ

Tl−Tg

x , where κ is the thermal conductivity of ice.

Translate into maths toolbox notation if you want (x→ y, t→ x, κ(Tl − Tg) = a): dy
dx = a

x .
Solve by separation (in physics notation): xdx = κ(Tl − Tg)dt.
Result: x(t) =

√
2κ(Tl − Tg)t using the boundary condition x(0) = 0.

b. The decay sequence of Uranium is 238 U
α→ 234 Th

β→ 234 Pa
β→ 234 U

α→ 230 Th
α→ 226 Ra

α→ Rn 222
α→

218 Po
α→ 214 Pb

β→ 214 Bi
β→ 214 Po

α→ 210 Pb
β→ 210 Bi

β→ 210 Po
α→ 206 Pb (stable). Work out the amount

N15 of stable 206Pb as a function of time if you start with a slab of 238U containing N0 atoms. The half lives
of the isotopes are denoted by λi for isotope i in the chain, starting from i=1 for 238U.

Hint: First assume that there is only one step rather than a chain of decays. Then add the second step. Then
work out by analogy the formula for the i-th step. You can then either explicitly work yourself through the
whole sequence or establish a recursive formula.

If there were only one step, dN1

dt = −λ1N1, which can be solved by separation.
Result: N1 = N0e−λ1t.
In the second step, the rate of change of the 234Th population is a balance of decaying 234Th nuclei and newly
formed 234Th nuclei formed by the decay of 238U: dN2

dt = λ1N1 − λ2N2.
Not separable: 3 terms, one of which will always contain both t and N2.
Solve by general formula for fully linear ODE: dN2

dt + λ2N2 = λ1N1. (Note that N2 is the dependent variable
while N1 is a function of the independent variable t only.)
Result: N2 = λ1N1

λ2−λ1

(
e−λ1t − eλ2t

)
using the boundary condition N2(0) = 0 (i.e. pure 238U at first).

Similarly, for the i-th step, we have dNi

dt = λi−1Ni−1 − λiNi and hence Ni = λi−1Ni−1

λi−λi−1

(
e−λi−1t − eλit

)
.

Because of the recursion in this formula, the amount of isotope i at any given time is
Ni = λi−1

λi−λi−1

(
e−λi−1t − eλit

)
× λi−2

λi−1−λi−2

(
e−λi−2t − eλi−1t

)
× · · · × λ1

λ2−λ1

(
e−λ1t − eλ2t

)
×N0e−λ1t,

or, using the symbol Πi−1
j=1 for the product from index j = 1 to j = i− 1,

Ni = N0e−λ1tΠi−1
j=1

λj

λj+1−λj

(
e−λjt − e−λj+1t

)
.

After having found the solution algebraically, you may wish to plug in the numbers and think about
implications for the deep-level storage of nuclear waste. Here are the half lives in years, days, or seconds.
λ1 = 4.468× 109 a λ4 = 244 600 a λ7 = 3.825 d λ10 = 1 194 s λ13 = 5.013 d
λ2 = 24.10 d λ5 = 75 400 a λ8 = 183 s λ11 = 1.64× 10−4 s λ14 = 138.38 d
λ3 = 70.2 s λ6 = 1 600 a λ9 = 1 608 s λ12 = 22.3 a

This is one of the three naturally occurring decay sequences. Basically, the first step is so slow that all other
steps can be regarded as “instantaneous” on its time scale. Most atoms in any given sample from the sequence
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will be either 238U or 206Pb. However, 238U is no use as fuel (partly because of its relative stability), and
intermediate products do play an important role when predicting the behaviour of nuclear waste.

4. Deriving the derivative.
When dealing with the Bernoulli equation approach, we’ve used the substitution z = y1−n and its derivative
dz
dx = (1− n)y−n dy

dx . Show that this derivative is in fact correct.
dz
dx = dz

dy
dy
dx = d

dy

(
y1−n

)
dy
dx = (1− n)y−n dy

dx .

Note that although the first step looks just like a multiplication by dy
dy , it isn’t: in actual fact, the chain rule is applied

to the function z(y(x)) here.
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